论文标题
限制法律和一致的固定和不同峰值特征值数量的估计标准
Limiting laws and consistent estimation criteria for fixed and diverging number of spiked eigenvalues
论文作者
论文摘要
在本文中,我们研究了限制法律的限制法律,并在尺寸$ p $的尖峰协方差模型中对极端特征值的一致估计标准进行研究。首先,对于固定的$ p $,我们提出了一个可以始终如一估算的广义估计标准,即$ k $,是尖刺特征值的数量。与现有文献相比,我们表明在罚款期限较弱的条件下可以实现一致性。接下来,我们使用随机矩阵理论技术允许$ p $ and $ k $分歧,从而得出了限制峰值样品特征值的分布。值得注意的是,我们的结果不需要正上方或趋向于无穷大的尖峰特征值,正如现有文献所假设的那样。基于上述结果,我们制定了广义估算标准,并表明它可以始终如一地估算$ k $,而$ k $可以固定或以$ k = o(n^{1/3})$的订单固定或生长。我们进一步表明,我们工作的结果继续在普通人群分布下继续保持不正常。通过比较模拟研究来说明了提出的估计标准的功效。
In this paper, we study limiting laws and consistent estimation criteria for the extreme eigenvalues in a spiked covariance model of dimension $p$. Firstly, for fixed $p$, we propose a generalized estimation criterion that can consistently estimate, $k$, the number of spiked eigenvalues. Compared with the existing literature, we show that consistency can be achieved under weaker conditions on the penalty term. Next, allowing both $p$ and $k$ to diverge, we derive limiting distributions of the spiked sample eigenvalues using random matrix theory techniques. Notably, our results do not require the spiked eigenvalues to be uniformly bounded from above or tending to infinity, as have been assumed in the existing literature. Based on the above derived results, we formulate a generalized estimation criterion and show that it can consistently estimate $k$, while $k$ can be fixed or grow at an order of $k=o(n^{1/3})$. We further show that the results in our work continue to hold under a general population distribution without assuming normality. The efficacy of the proposed estimation criteria is illustrated through comparative simulation studies.