论文标题
谎言组上的保形杀死对称张量
Conformal Killing symmetric tensors on Lie groups
论文作者
论文摘要
我们介绍了杀戮类型的公制谎言代数的概念,其特征是所有共形杀死对称的张量都是杀死张量和度量张量的倍数的总和。我们表明,如果谎言代数为2步,或2维或3维或4维的不可溶解或具有1维派生理想的4维求解,或者具有ABELIAN因素,那么它是与任何正确定性计数有关的杀戮类型。
We introduce the notion of metric Lie algebras of Killing type, which are characterized by the fact that all conformal Killing symmetric tensors are sums of Killing tensors and multiples of the metric tensor. We show that if a Lie algebra is either 2-step nilpotent, or 2- or 3-dimensional, or 4-dimensional non-solvable, or 4-dimensional solvable with 1-dimensional derived ideal, or has an abelian factor, then it is of Killing type with respect to any positive definite metric.