论文标题

VSQL:分类的变分阴影量子学习

VSQL: Variational Shadow Quantum Learning for Classification

论文作者

Li, Guangxi, Song, Zhixin, Wang, Xin

论文摘要

量子数据的分类对于量子机学习和近期量子技术至关重要。在本文中,我们为监督量子学习提出了一个新的混合量子古典框架,我们称之为变分阴影量子学习(VSQL)。我们的方法尤其利用了量子数据的经典阴影,该阴影从根本地表示量子数据相对于某些物理可观察物的侧面信息。具体而言,我们首先使用变分阴影量子电路以卷积方式提取经典特征,然后利用完全连接的神经网络来完成分类任务。我们表明,这种方法可以大大减少参数的数量,从而更好地促进量子电路训练。同时,由于在这样的阴影电路中使用了较少的量子门,因此将引入更少的噪声。此外,我们表明,可以在VSQL中避免使用贫瘠的高原问题,这是量子机学习中一个重大梯度消失的问题。最后,我们通过数值实验来证明VSQL在量子态分类以及识别多标记手写数字的效率。特别是,在手写数字识别的二进制案例中,我们的VSQL方法在测试准确性中的现有变异量子分类器的表现优于现有的变异量子分类器,并且尤其需要更少的参数。

Classification of quantum data is essential for quantum machine learning and near-term quantum technologies. In this paper, we propose a new hybrid quantum-classical framework for supervised quantum learning, which we call Variational Shadow Quantum Learning (VSQL). Our method in particular utilizes the classical shadows of quantum data, which fundamentally represent the side information of quantum data with respect to certain physical observables. Specifically, we first use variational shadow quantum circuits to extract classical features in a convolution way and then utilize a fully-connected neural network to complete the classification task. We show that this method could sharply reduce the number of parameters and thus better facilitate quantum circuit training. Simultaneously, less noise will be introduced since fewer quantum gates are employed in such shadow circuits. Moreover, we show that the Barren Plateau issue, a significant gradient vanishing problem in quantum machine learning, could be avoided in VSQL. Finally, we demonstrate the efficiency of VSQL in quantum classification via numerical experiments on the classification of quantum states and the recognition of multi-labeled handwritten digits. In particular, our VSQL approach outperforms existing variational quantum classifiers in the test accuracy in the binary case of handwritten digit recognition and notably requires much fewer parameters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源