论文标题

视觉内容的几何增强:超越地面真相

Geometry Enhancements from Visual Content: Going Beyond Ground Truth

论文作者

Azaria, Liran, Raviv, Dan

论文摘要

这项工作提出了一种新的环状体系结构,该结构从图像中提取高频图案,并将其重新插入为几何特征。此过程使我们能够增强低成本深度传感器的分辨率,一方面捕获细节,忠于另一方面的扫描地面真相。我们为深度超分辨率任务以及视觉上有吸引力的增强生成的3D模型提供了最先进的结果。

This work presents a new cyclic architecture that extracts high-frequency patterns from images and re-insert them as geometric features. This procedure allows us to enhance the resolution of low-cost depth sensors capturing fine details on the one hand and being loyal to the scanned ground truth on the other. We present state-of-the-art results for depth super-resolution tasks and as well as visually attractive, enhanced generated 3D models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源