论文标题
政府武器采购在预测内部冲突中每月死亡的作用:半参数等级栏模型
The Role of Governmental Weapons Procurements in Forecasting Monthly Fatalities in Intrastate Conflicts: A Semiparametric Hierarchical Hurdle Model
论文作者
论文摘要
准确且可解释的预测模型在空间和时间上预测内部冲突伤亡人数的变化对于政策制定者和国际非政府组织(NGOS)至关重要。使用计数数据方法,我们提出了一个分层障碍回归模型,以解决每月PRIO网格级别的相应预测挑战。更确切地说,我们将特定时间点的当地武装冲突的强度建模为三阶段的过程。我们的第一个方法和两个方法估计,我们是否将分别在该国和网格电池级别上观察任何伤亡,而第三阶段则采用了截短数据的回归模型来预测前两个阶段中有条件的死亡人数。在这个建模框架内,我们专注于政府武器进口的作用,作为使政府加强或阻止战斗的过程因素。我们进一步认为,网格单元的地理远程性必定会减轻这些军事积累的影响。样本外的预测证实了我们的简约和理论驱动模型的有效性,该模型可以完全透明度与预测过程中的准确性相结合。
Accurate and interpretable forecasting models predicting spatially and temporally fine-grained changes in the numbers of intrastate conflict casualties are of crucial importance for policymakers and international non-governmental organisations (NGOs). Using a count data approach, we propose a hierarchical hurdle regression model to address the corresponding prediction challenge at the monthly PRIO-grid level. More precisely, we model the intensity of local armed conflict at a specific point in time as a three-stage process. Stages one and two of our approach estimate whether we will observe any casualties at the country- and grid-cell-level, respectively, while stage three applies a regression model for truncated data to predict the number of such fatalities conditional upon the previous two stages. Within this modelling framework, we focus on the role of governmental arms imports as a processual factor allowing governments to intensify or deter from fighting. We further argue that a grid cell's geographic remoteness is bound to moderate the effects of these military buildups. Out-of-sample predictions corroborate the effectiveness of our parsimonious and theory-driven model, which enables full transparency combined with accuracy in the forecasting process.