论文标题
网络中互惠和社区发现的生成模型
Generative model for reciprocity and community detection in networks
论文作者
论文摘要
我们提出了一种概率生成模型和有效算法,以模拟有向网络中的互惠。与解决此问题(例如指数随机图)的其他方法不同,它将潜在变量作为节点分配为社区成员资格,并将其分配给整个网络,而不是拟合订单统计信息。它正式的假设是,如果一个人已经观察到与她的相互作用,则更有可能发生指示互动。它提供了一个自然的框架,可以在边缘之间有条件独立性的网络生成模型中放松共同的假设,并且可以用来执行推理任务,例如预测边缘的存在,因为在反向方向上观察到边缘。使用有效的期望最大化算法进行推理,该算法利用网络的稀疏性,从而实现有效且可扩展的实现。我们通过分析合成和真实数据来说明这些发现,包括社交网络,学术引用和Erasmus学生交流计划。我们的方法在预测边缘和生成网络中的表现都优于其他人,这些网络反映了在实际数据中观察到的互惠值,同时推断基础的社区结构。我们在线提供代码的开源实现。
We present a probabilistic generative model and efficient algorithm to model reciprocity in directed networks. Unlike other methods that address this problem such as exponential random graphs, it assigns latent variables as community memberships to nodes and a reciprocity parameter to the whole network rather than fitting order statistics. It formalizes the assumption that a directed interaction is more likely to occur if an individual has already observed an interaction towards her. It provides a natural framework for relaxing the common assumption in network generative models of conditional independence between edges, and it can be used to perform inference tasks such as predicting the existence of an edge given the observation of an edge in the reverse direction. Inference is performed using an efficient expectation-maximization algorithm that exploits the sparsity of the network, leading to an efficient and scalable implementation. We illustrate these findings by analyzing synthetic and real data, including social networks, academic citations and the Erasmus student exchange program. Our method outperforms others in both predicting edges and generating networks that reflect the reciprocity values observed in real data, while at the same time inferring an underlying community structure. We provide an open-source implementation of the code online.