论文标题
弹性雷利 - 普拉托不稳定性:非线性状态的动态选择
Elastic Rayleigh-Plateau instability: Dynamical selection of nonlinear states
论文作者
论文摘要
弹性水凝胶的细长螺纹易于表面不稳定性,这让人联想到经典的液体喷气机经典的雷利 - 普拉托不稳定性。在实验中观察到的最终高度非线性状态是毛细血管和大弹性变形之间的竞争引起的。结合了细长的分析和完全三维数值模拟,我们介绍了所有可能的形态的相位图,用于受毛细管力的不稳定的新霍克圆柱体。有趣的是,对于柔软的圆柱体,我们发现了两种不同的构型的共存,即,在串线上和珠子上的珠子。结果表明,对于给定的一组参数,最终模式是通过动力学演化选择的。为了捕获这一点,我们计算分散关系并确定动态选择的轮廓的特征波长。 “细长”结果的有效性通过模拟确认,这些结果与弹性和粘弹性线的实验一致。
A slender thread of elastic hydrogel is susceptible to a surface instability that is reminiscent of the classical Rayleigh-Plateau instability of liquid jets. The final, highly nonlinear states that are observed in experiments arise from a competition between capillarity and large elastic deformations. Combining a slender analysis and fully three-dimensional numerical simulations, we present the phase map of all possible morphologies for an unstable neo-Hookean cylinder subjected to capillary forces. Interestingly, for softer cylinders we find the coexistence of two distinct configurations, namely, cylinders-on-a-string and beads-on-a-string. It is shown that for a given set of parameters, the final pattern is selected via a dynamical evolution. To capture this, we compute the dispersion relation and determine the characteristic wavelength of the dynamically selected profiles. The validity of the "slender" results is confirmed via simulations and these results are consistent with experiments on elastic and viscoelastic threads.