论文标题

三州量子步行的温度

Temperature of the three-state quantum walk

论文作者

Tude, Luisa Toledo, de Oliveira, Marcos C.

论文摘要

尽管造成的量子步行是在单一演化下的封闭量子系统,但其希尔伯特空间可以分为两个子空间,这使得一个人可以将其中一个子系统(硬币或沃克)分析为与储层接触的开放系统。在目前的工作中,我们计算了三态量子行走的渐近降低密度矩阵,在无限的线路中,并使用这将分析手性和位置空间之间的纠缠。我们在渐近极限下计算von Neumann熵和系统平均能量的纠缠温度。

Despite the coined quantum walk being a closed quantum system under a unitary evolution, its Hilbert space can be divided in two sub-spaces, which makes it possible for one to analyze one of the subsystems (the coin or the walker) as an open system in contact with a reservoir. In the present work we calculate the asymptotic reduced density matrix of the coin space of the three-state quantum walk in an infinite line, and use that result to analyze the entanglement between the chirality, and position space. We calculate the von Neumann entropy and the entanglement temperature per mean energy of the system in the asymptotic limit.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源