论文标题

使用成对类相似性的自适应可验证训练

Adaptive Verifiable Training Using Pairwise Class Similarity

论文作者

Wang, Shiqi, Eykholt, Kevin, Lee, Taesung, Jang, Jiyong, Molloy, Ian

论文摘要

可验证的培训已在创建神经网络方面取得了成功,这些神经网络可证明对给定的噪声非常强大。但是,尽管仅执行单个鲁棒性标准,但其性能的扩展性却很差。在CIFAR10上,非舒适的LENET模型的错误率为21.63%,而使用可验证训练和L-Infinity鲁棒性标准为8/255的模型的错误率为57.10%。经检查时,我们发现,在视觉上类似的类标记时,该模型的错误率高达61.65%。我们将绩效损失归因于类间相似性。类似的类(即在特征空间中关闭)增加了学习健壮模型的困难。尽管希望为大型鲁棒性区域训练健壮的模型,但成对类的相似性限制了潜在的增长。此外,必须考虑误入类似类别的相对成本。在安全或安全关键任务中,类似的类可能属于同一组,因此同样敏感。 在这项工作中,我们提出了一种利用类间相似性来提高可验证训练的性能并创建相对于多个对抗性标准的强大模型的新方法。首先,我们使用团聚聚类来分组相似的类,并根据簇之间的相似性分配鲁棒性标准。接下来,我们提出了两种应用我们的方法:(1)组间鲁棒性优先级,它使用自定义损失术语来创建具有多种鲁棒性保证的单个模型,以及(2)神经决策树,该模型训练具有不同鲁棒性的多个子分类器保证并将它们结合在一起,并将它们结合在一起。在时尚少数和CIFAR10上,我们的方法分别提高了9.63%和30.89%。在CIFAR100上,我们的方法将清洁性能提高了26.32%。

Verifiable training has shown success in creating neural networks that are provably robust to a given amount of noise. However, despite only enforcing a single robustness criterion, its performance scales poorly with dataset complexity. On CIFAR10, a non-robust LeNet model has a 21.63% error rate, while a model created using verifiable training and a L-infinity robustness criterion of 8/255, has an error rate of 57.10%. Upon examination, we find that when labeling visually similar classes, the model's error rate is as high as 61.65%. We attribute the loss in performance to inter-class similarity. Similar classes (i.e., close in the feature space) increase the difficulty of learning a robust model. While it's desirable to train a robust model for a large robustness region, pairwise class similarities limit the potential gains. Also, consideration must be made regarding the relative cost of mistaking similar classes. In security or safety critical tasks, similar classes are likely to belong to the same group, and thus are equally sensitive. In this work, we propose a new approach that utilizes inter-class similarity to improve the performance of verifiable training and create robust models with respect to multiple adversarial criteria. First, we use agglomerate clustering to group similar classes and assign robustness criteria based on the similarity between clusters. Next, we propose two methods to apply our approach: (1) Inter-Group Robustness Prioritization, which uses a custom loss term to create a single model with multiple robustness guarantees and (2) neural decision trees, which trains multiple sub-classifiers with different robustness guarantees and combines them in a decision tree architecture. On Fashion-MNIST and CIFAR10, our approach improves clean performance by 9.63% and 30.89% respectively. On CIFAR100, our approach improves clean performance by 26.32%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源