论文标题
通过模拟光谱变化来了解IA类型IA超新星距离偏差
Understanding Type Ia Supernova Distance Biases by Simulating Spectral Variations
论文作者
论文摘要
在接下来的十年中,Vera C. Rubin天文台和Nancy Grace Roman Space望远镜的瞬态搜索将使已知类型的IA Supernovae(SN IA)的样本从$ \ sim10^3 $增加到$ 10^5 $。随着统计不确定性在宇宙学测量方面的减少,需要采用新方法来减少系统的不确定性。表征SN IA的基本光谱演变仍然是当前宇宙学分析中的主要系统不确定性,激发了下一个SN IA宇宙学时代的新仿真工具:建立自己的光谱能量分布(byosed)。在SNANA框架内使用Byosed来模拟光曲线,通过将光谱变化应用于模型SED,从而可以灵活地测试SN IA距离测量中可能的系统变化。我们通过比较使用基线SED模型的名义Roman SN IA调查模拟与使用与Byosed扰动的SED进行模拟的模拟来测试框架,并研究分析中忽略特定SED特征的影响。这些特征包括两个可能的预测关系的半经验模型:SN弹射速度和光曲线可观察物之间,以及SN Hubble残差与宿主星系质量之间的红移依赖关系。我们使用salt2&bbc框架分析了每个byosed模拟,并估计了暗能量方程参数的测量值$ w $的变化。与没有这些功能的模拟相比,我们发现SN速度的$ΔW= -0.023 $,红移变化的宿主质量的差异为0.021 $。通过使用SN IA宇宙学模拟,将来的分析(例如Rubin和Roman SN IA样本)将具有更大的灵活性来限制或减少此类SN IA建模不确定性。
In the next decade, transient searches from the Vera C. Rubin Observatory and the Nancy Grace Roman Space Telescope will increase the sample of known Type Ia Supernovae (SN Ia) from $\sim10^3$ to $10^5$. With this reduction of statistical uncertainties on cosmological measurements, new methods are needed to reduce systematic uncertainties. Characterizing the underlying spectroscopic evolution of SN Ia remains a major systematic uncertainty in current cosmological analyses, motivating a new simulation tool for the next era of SN Ia cosmology: Build Your Own Spectral Energy Distribution (BYOSED). BYOSED is used within the SNANA framework to simulate light curves by applying spectral variations to model SEDs, enabling flexible testing of possible systematic shifts in SN Ia distance measurements. We test the framework by comparing a nominal Roman SN Ia survey simulation using a baseline SED model to simulations using SEDs perturbed with BYOSED, and investigate the impact of neglecting specific SED features in the analysis. These features include semi-empirical models of two possible, predicted relationships: between SN ejecta velocity and light curve observables, and a redshift-dependent relationship between SN Hubble residuals and host galaxy mass. We analyze each BYOSED simulation using the SALT2 & BBC framework, and estimate changes in the measured value of the dark energy equation-of-state parameter, $w$. We find a difference of $Δw=-0.023$ for SN velocity and $Δw=0.021$ for redshift-evolving host mass when compared to simulations without these features. By using BYOSED for SN Ia cosmology simulations, future analyses (e.g., Rubin and Roman SN Ia samples) will have greater flexibility to constrain or reduce such SN Ia modeling uncertainties.