论文标题
代数中间双曲线
Algebraic intermediate hyperbolicities
论文作者
论文摘要
我们将Lang的猜想扩展到了中间双曲线的设置,并证明了这些猜想所激发的两个新结果。更确切地说,我们首先将代数双曲线(最初由Demailly引入)的概念扩展到中间双曲线的设置,并表明如果Cotangent Bundle的适当外部功率足够,则该特性将保持。然后,我们证明,这种中间代数的双曲线意味着偶然自动形态和来自给定的投影量变种的溢流图的有限性。我们的工作回答了Kobayashi关于分析双曲线问题的代数类似物。
We extend Lang's conjectures to the setting of intermediate hyperbolicity and prove two new results motivated by these conjectures. More precisely, we first extend the notion of algebraic hyperbolicity (originally introduced by Demailly) to the setting of intermediate hyperbolicity and show that this property holds if the appropriate exterior power of the cotangent bundle is ample. Then, we prove that this intermediate algebraic hyperbolicity implies the finiteness of the group of birational automorphisms and of the set of surjective maps from a given projective variety. Our work answers the algebraic analogue of a question of Kobayashi on analytic hyperbolicity.