论文标题
大型超图无周期
Large hypergraphs without tight cycles
论文作者
论文摘要
$ r $ - 均匀的长度$ \ ell> r $的紧密周期是一个超图,带有顶点$ v_1,\ dots,v_ \ ell $,并边缘$ \ {v_i,v_i {i+1},\ dots,v_ {i+r-1} \} $(对于所有$ i $),with y modul $ \。 Sudakov和Tomon表明,对于每个固定的$ r \ geq 3 $,$ r $ - 均匀的超图在$ n $ dertices上,它不包含任何长度的紧密周期,最多只有$ n^{r-1+o(1)} $ hyperedges,但最著名的结构(只有最大的edges)(只有最大的edges)提供了$ω(仅提供$ω(n^n^^r-1})在本说明中,我们证明,对于每种固定的$ r \ geq 3 $,都有$ r $统一的超图,上面有$ω(n^{r-1} \ log n/\ log n/\ log \ log \ log n)$ edges,这些$ edges不包含紧密的周期,表明$ o(1)$在上限的指数中是$ o(1)$。
An $r$-uniform tight cycle of length $\ell>r$ is a hypergraph with vertices $v_1,\dots,v_\ell$ and edges $\{v_i,v_{i+1},\dots,v_{i+r-1}\}$ (for all $i$), with the indices taken modulo $\ell$. It was shown by Sudakov and Tomon that for each fixed $r\geq 3$, an $r$-uniform hypergraph on $n$ vertices which does not contain a tight cycle of any length has at most $n^{r-1+o(1)}$ hyperedges, but the best known construction (with the largest number of edges) only gives $Ω(n^{r-1})$ edges. In this note we prove that, for each fixed $r\geq 3$, there are $r$-uniform hypergraphs with $Ω(n^{r-1}\log n/\log\log n)$ edges which contain no tight cycles, showing that the $o(1)$ term in the exponent of the upper bound is necessary.