论文标题

生物物理神经元模型的系统鉴定

System identification of biophysical neuronal models

论文作者

Burghi, Thiago B., Schoukens, Maarten, Sepulchre, Rodolphe

论文摘要

经过六十年的神经元定量生物物理建模,从输入输出数据中识别神经元动力学仍然是一个具有挑战性的问题,这主要是由于可激发行为的固有非线性性质。通过根据褪色记忆的识别运算符来重新制定问题,我们基于一种简单的方法,基于通过串联互连的广义正规基础函数(GOBFS)和静态人工神经网络给出的参数化。我们表明,GOBF特别适合解决识别问题,并为选择解决神经元行为超敏的GOBF杆提供了启发式。该方法在鉴定螃蟹胃神经节爆裂模型的鉴定上进行了说明。

After sixty years of quantitative biophysical modeling of neurons, the identification of neuronal dynamics from input-output data remains a challenging problem, primarily due to the inherently nonlinear nature of excitable behaviors. By reformulating the problem in terms of the identification of an operator with fading memory, we explore a simple approach based on a parametrization given by a series interconnection of Generalized Orthonormal Basis Functions (GOBFs) and static Artificial Neural Networks. We show that GOBFs are particularly well-suited to tackle the identification problem, and provide a heuristic for selecting GOBF poles which addresses the ultra-sensitivity of neuronal behaviors. The method is illustrated on the identification of a bursting model from the crab stomatogastric ganglion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源