论文标题

高分辨率全球灌溉预测,使用Sentinel-2 300M数据

High-resolution global irrigation prediction with Sentinel-2 30m data

论文作者

Weixin, Wu, Thakkar, Sonal, Hawkins, Will, Vahabi, Hossein, Todeschini, Alberto

论文摘要

对全球灌溉用法的准确而精确的理解对于各种气候科学努力至关重要。灌溉是能源密集型的,随着人口目前的速度增长,农作物需求的增加,用水的使用将对气候变化产生影响。精确的灌溉数据可以帮助监测用水量并优化农业产量,尤其是在发展中国家。灌溉数据与降水数据同时可用于预测水预算以及气候和天气建模。通过我们的研究,我们产生了一个灌溉预测模型,该模型结合了归一化差异指数(NDVI)的时间标志的无监督聚类和降水启发式,以标记给定年内每个农田簇达到峰值的几个月。我们已经开发了一种新型的灌溉模型和Python软件包(“ Inrigation30”),以生成30m的全球农田灌溉预测。借助一小部分的耕地坐标和灌溉标签,使用了最先进的NASA资助的GFSAD30项目所用资源的一小部分,其灌溉数据仅限于印度和澳大利亚,我们的模型能够达到超过97 \%的一致性评分,并准确地达到了92 \%的准确性,在一个小地Geo-decliverse的测试中的准确度。

An accurate and precise understanding of global irrigation usage is crucial for a variety of climate science efforts. Irrigation is highly energy-intensive, and as population growth continues at its current pace, increases in crop need and water usage will have an impact on climate change. Precise irrigation data can help with monitoring water usage and optimizing agricultural yield, particularly in developing countries. Irrigation data, in tandem with precipitation data, can be used to predict water budgets as well as climate and weather modeling. With our research, we produce an irrigation prediction model that combines unsupervised clustering of Normalized Difference Vegetation Index (NDVI) temporal signatures with a precipitation heuristic to label the months that irrigation peaks for each cropland cluster in a given year. We have developed a novel irrigation model and Python package ("Irrigation30") to generate 30m resolution irrigation predictions of cropland worldwide. With a small crowdsourced test set of cropland coordinates and irrigation labels, using a fraction of the resources used by the state-of-the-art NASA-funded GFSAD30 project with irrigation data limited to India and Australia, our model was able to achieve consistency scores in excess of 97\% and an accuracy of 92\% in a small geo-diverse randomly sampled test set.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源