论文标题

嘴唇不要撒谎:一种可以探索伪造的方法

Lips Don't Lie: A Generalisable and Robust Approach to Face Forgery Detection

论文作者

Haliassos, Alexandros, Vougioukas, Konstantinos, Petridis, Stavros, Pantic, Maja

论文摘要

尽管目前基于深度学习的面部伪造探测器在受约束的情况下取得了令人印象深刻的性能,但它们容易受到未见的操纵方法创建的样本的影响。最近的一些作品显示了概括的改进,但依赖于通过常见的后处理操作(例如压缩)易于破坏的提示。在本文中,我们提出了脂释镜,这是一种能够将新型操作概括和承受各种扭曲的检测方法。脂福音针对口腔运动中的高级语义不规则性,这在许多生成的视频中很常见。它在于首先预处理时空网络以执行视觉语音识别(唇部阅读),从而学习与自然嘴运动有关的丰富内部表示。随后将时间网络固定在真实数据和锻造数据的固定口嵌入中,以便根据口腔运动检测假视频,而不会过度适应低级,操纵特定的人工制品。广泛的实验表明,这种简单的方法在概括方面显着超过了最先进的操纵和对扰动的鲁棒性,并阐明了导致其性能的因素。代码可在GitHub上找到。

Although current deep learning-based face forgery detectors achieve impressive performance in constrained scenarios, they are vulnerable to samples created by unseen manipulation methods. Some recent works show improvements in generalisation but rely on cues that are easily corrupted by common post-processing operations such as compression. In this paper, we propose LipForensics, a detection approach capable of both generalising to novel manipulations and withstanding various distortions. LipForensics targets high-level semantic irregularities in mouth movements, which are common in many generated videos. It consists in first pretraining a spatio-temporal network to perform visual speech recognition (lipreading), thus learning rich internal representations related to natural mouth motion. A temporal network is subsequently finetuned on fixed mouth embeddings of real and forged data in order to detect fake videos based on mouth movements without overfitting to low-level, manipulation-specific artefacts. Extensive experiments show that this simple approach significantly surpasses the state-of-the-art in terms of generalisation to unseen manipulations and robustness to perturbations, as well as shed light on the factors responsible for its performance. Code is available on GitHub.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源