论文标题
转移的时间:预测和评估机器人人类聊天交接
Time to Transfer: Predicting and Evaluating Machine-Human Chatting Handoff
论文作者
论文摘要
聊天机器人能够完全替换人类代理吗?简短的答案可能是 - “这取决于……”。对于一些具有挑战性的案例,例如,对话的局部频谱在培训语料库的覆盖范围之外传播,聊天机器人可能会出现故障并返回不满意的话语。可以通过引入机器人类聊天交接(MHCH)来解决此问题,该聊天率(MHCH)可实现人为合作的协作。为了检测正常/可转移的话语,我们提出了一个难以辅助的匹配推理(DAMI)网络,利用难度辅助编码来增强话语的表示。此外,引入了匹配的推理机制来捕获上下文匹配功能。提出了一个新的评估指标,即公差(GT-T)内的黄金转移,以通过考虑MHCH的公差特性来评估性能。为了提供对任务的见解并验证提出的模型,我们收集了两个新数据集。提出了广泛的实验结果并与一系列基线模型进行了对比,以证明我们在MHCH上的功效。
Is chatbot able to completely replace the human agent? The short answer could be - "it depends...". For some challenging cases, e.g., dialogue's topical spectrum spreads beyond the training corpus coverage, the chatbot may malfunction and return unsatisfied utterances. This problem can be addressed by introducing the Machine-Human Chatting Handoff (MHCH), which enables human-algorithm collaboration. To detect the normal/transferable utterances, we propose a Difficulty-Assisted Matching Inference (DAMI) network, utilizing difficulty-assisted encoding to enhance the representations of utterances. Moreover, a matching inference mechanism is introduced to capture the contextual matching features. A new evaluation metric, Golden Transfer within Tolerance (GT-T), is proposed to assess the performance by considering the tolerance property of the MHCH. To provide insights into the task and validate the proposed model, we collect two new datasets. Extensive experimental results are presented and contrasted against a series of baseline models to demonstrate the efficacy of our model on MHCH.