论文标题

物种身份误差的丰富度估计

Richness estimation with species identity error

论文作者

Yen, Jai-Hua, Chiu, Chun-Huo

论文摘要

由于样本量或物种身份误差较小,对有趣区域的丰富度估计始终是一项挑战统计工作。在文献中,大多数丰富度估计量仅提议应对尺寸限制样本的低估。但是,物种身份误差几乎发生在每个物种的调查中,并严重降低了观察到的,单旋和Doubleton Richness的准确性,以影响丰富度估计量的行为。因此,为了估计真正的丰富性,在处理丰富度估计工作之前,应修改由于物种身份误差而产生的偏见收集的数据。在手稿中,我们提出了一种新方法,以纠正由于物种身份误差而导致的丰富度估计的偏见。首先,使用研究人员获得的子图的物种清单清单库存用于估计物种身份错误率。然后,我们可以从有趣的区域纠正原始采样数据的偏见,单胎和Doubleton Richness。最后,可以提供文献中提出的丰富性估计值,以根据调整后的观察到的数据获得更正确的估计。为了研究所提出的方法的行为,我们通过从具有不同物种身份错误率的各种物种模型中生成数据集进行了模拟。出于插图的目的,提供了实际数据以证明我们提出的方法。在台湾北部的软桥县的有机农田中调查了存在/缺席的杂草。

Richness estimation of an interesting area is always a challenge statistical work due to small sample size or species identity error. In the literatures, most richness estimators were only proposed to tackle the underestimation of the size-limited sample. However, species identity error almost occurs in each species survey and seriously reduces the accuracy of observed, singleton, and doubleton richness in turns to influence the behavior of richness estimator. Therefore, to estimate the true richness, the biased collected data due to species identity error should be modified before processing the richness estimation work. In the manuscript, we propose a new approach to correct the bias of richness estimation due to species identity error. First, a species list inventory from a subplot obtained by the investigator was used to estimate the species identity error rate. Then, we can correct the biased observed, singleton, and doubleton richness of the raw sampling data from the interesting area. Finally, the richness estimators proposed in the literature could be supplied to get the more correct estimates based on adjusted observed data. To investigate the behavior of the proposed method, we performed simulations by generating data sets from various species models with different species identity error rates. For the purpose of illustration, the real data was supplied to demonstrate our proposed approach. A presence/absence weeds species was surveyed in the organic farmland located at Soft Bridge County in the North of Taiwan.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源