论文标题
可扩展模型选择的近似拉普拉斯近似值
Approximate Laplace approximations for scalable model selection
论文作者
论文摘要
我们提出了近似的拉普拉斯近似(ALA)来评估贝叶斯模型选择中的瓶颈综合似然。 Laplace近似(LA)是一种流行的工具,可以加快计算并配置强大的模型选择属性。但是,当样本量很大或一个考虑许多模型时,所需的优化的成本将变得不切实际。 ALA降低了为每个模型解决最小二乘问题的成本。此外,它可以在诸如共享预计足够的统计数据和矩阵分解中的某些操作之类的模型中有效计算。我们证明,在广义(可能是非线性)模型中,ALA以与精确计算相同的功能速率来实现适当定义的最佳模型的强大模型选择一致性。我们考虑固定和高维问题,组和分层约束,以及所有模型都符合指定的可能性。我们还获得了非本地先验的高斯回归率的ALA速率,这是一个重要的例子,在该例子中,LA可以昂贵,并且不能始终如一地估计综合的可能性。我们的例子包括非线性回归,物流,泊松和生存模型。我们在R软件包MOMBF中实现了方法。
We propose the approximate Laplace approximation (ALA) to evaluate integrated likelihoods, a bottleneck in Bayesian model selection. The Laplace approximation (LA) is a popular tool that speeds up such computation and equips strong model selection properties. However, when the sample size is large or one considers many models the cost of the required optimizations becomes impractical. ALA reduces the cost to that of solving a least-squares problem for each model. Further, it enables efficient computation across models such as sharing pre-computed sufficient statistics and certain operations in matrix decompositions. We prove that in generalized (possibly non-linear) models ALA achieves a strong form of model selection consistency for a suitably-defined optimal model, at the same functional rates as exact computation. We consider fixed- and high-dimensional problems, group and hierarchical constraints, and the possibility that all models are misspecified. We also obtain ALA rates for Gaussian regression under non-local priors, an important example where the LA can be costly and does not consistently estimate the integrated likelihood. Our examples include non-linear regression, logistic, Poisson and survival models. We implement the methodology in the R package mombf.