论文标题
无限属的异形双曲线表面
Isospectral hyperbolic surfaces of infinite genus
论文作者
论文摘要
我们表明,任何无平面末端的无限型表面都承认任意长度具有同一双曲线结构的家庭。如果表面具有无限的属,并且其末端的空间是自相似的,那么我们构建了一个无数的等光谱和准传统的双曲线结构。
We show that any infinite-type surface without planar ends admits arbitrarily large families of length isospectral hyperbolic structures. If the surface has infinite genus and its space of ends is self-similar, we construct an uncountable family of isospectral and quasiconformally distinct hyperbolic structures.