论文标题

混合特性中半稳定三倍的最小模型程序

Minimal model program for semi-stable threefolds in mixed characteristic

论文作者

Takamatsu, Teppei, Yoshikawa, Shou

论文摘要

在本文中,我们研究了混合特征中三倍的最小模型理论。作为Kawamata结果的概括,我们表明,MMP在一个出色的Dedekind方案$ V $的相对尺寸二的出色的Dedekind Schemes $ v $二的情况下,没有任何假设对$ v $的残留特性。我们还证明,我们可以在$ z $上运行$(k_ {x/v}+δ)$ - mmp-mmp,其中$π\ colon x \ to z $是$ \ mathbb {q} $ - fortorial quasi-projective quasi-projective quasi-projective quasi-projective $ v $ v $ -schemes and $(x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x的$ \ mathrm {ecc}(π)\ subset \lfloorΔ\ rfloor $。

In this paper, we study the minimal model theory for threefolds in mixed characteristic. As a generalization of a result of Kawamata, we show that the MMP holds for strictly semi-stable schemes over an excellent Dedekind scheme $V$ of relative dimension two without any assumption on the residue characteristics of $V$. We also prove that we can run a $(K_{X/V}+Δ)$-MMP over $Z$, where $π\colon X \to Z$ is a projective birational morphism of $\mathbb{Q}$-factorial quasi-projective $V$-schemes and $(X,Δ)$ is a three-dimensional dlt pair with $\mathrm{Exc}(π) \subset \lfloor Δ\rfloor $.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源