论文标题
多域多任务彩排,用于终身学习
Multi-Domain Multi-Task Rehearsal for Lifelong Learning
论文作者
论文摘要
彩排,试图通过在终身学习中存储旧知识来提醒模型,是减轻灾难性遗忘的最有效方法之一,即,在转向新任务时,有偏见忘记了以前的知识。但是,在训练新任务时,最先前基于彩排的方法的旧任务遭受了不可预测的域转移。这是因为这些方法总是忽略两个重要因素。首先,新任务与旧任务之间的数据不平衡,使旧任务的域容易转移。其次,所有任务之间的任务隔离将使域向不可预测的方向转移。为了解决本文不可预测的域转移,我们提出了多域多任务(MDMT)彩排,以训练旧任务和新的任务差异,并同样与任务之间的隔离相同。具体而言,提出了两级角缘损失,以鼓励课内/任务紧凑性和阶层间/任务差异,从而使模型保持在域混乱中。此外,为了进一步解决旧任务的域变化,我们在内存上提出了可选的情节蒸馏损失,以锚定每个旧任务的知识。基准数据集上的实验验证了所提出的方法可以有效地减轻不可预测的域移位。
Rehearsal, seeking to remind the model by storing old knowledge in lifelong learning, is one of the most effective ways to mitigate catastrophic forgetting, i.e., biased forgetting of previous knowledge when moving to new tasks. However, the old tasks of the most previous rehearsal-based methods suffer from the unpredictable domain shift when training the new task. This is because these methods always ignore two significant factors. First, the Data Imbalance between the new task and old tasks that makes the domain of old tasks prone to shift. Second, the Task Isolation among all tasks will make the domain shift toward unpredictable directions; To address the unpredictable domain shift, in this paper, we propose Multi-Domain Multi-Task (MDMT) rehearsal to train the old tasks and new task parallelly and equally to break the isolation among tasks. Specifically, a two-level angular margin loss is proposed to encourage the intra-class/task compactness and inter-class/task discrepancy, which keeps the model from domain chaos. In addition, to further address domain shift of the old tasks, we propose an optional episodic distillation loss on the memory to anchor the knowledge for each old task. Experiments on benchmark datasets validate the proposed approach can effectively mitigate the unpredictable domain shift.