论文标题

在非组织环境中对复杂系统的增量进行了数据驱动的优化

Incremental Data-driven Optimization of Complex Systems in Nonstationary Environments

论文作者

Yang, Cuie, Ding, Jinliang, Jin, Yaochu, Chai, Tianyou

论文摘要

有关数据驱动优化的现有工作集中在静态环境中的问题上,但是对动态环境中的问题的关注很少。本文提出了一种数据驱动的优化算法,以应对动态环境带来的挑战。首先,采用了数据流集合学习方法来训练替代物,以便合奏的每个基础学习者都在以前的环境中学习时间变化的目标函数。之后,采用多任务进化算法来同时优化过去替代替代的环境中的问题。这样,可以使用以前环境中的优化任务来加速当前环境中最佳的跟踪。由于无法在离线数据驱动的优化中验证替代物的真实健身函数,因此引入了用于离群值检测的支持向量域描述以选择可靠的解决方案。与四种最新数据驱动的优化算法相比,六个动态优化基准问题的经验结果证明了该算法的有效性。

Existing work on data-driven optimization focuses on problems in static environments, but little attention has been paid to problems in dynamic environments. This paper proposes a data-driven optimization algorithm to deal with the challenges presented by the dynamic environments. First, a data stream ensemble learning method is adopted to train the surrogates so that each base learner of the ensemble learns the time-varying objective function in the previous environments. After that, a multi-task evolutionary algorithm is employed to simultaneously optimize the problems in the past environments assisted by the ensemble surrogate. This way, the optimization tasks in the previous environments can be used to accelerate the tracking of the optimum in the current environment. Since the real fitness function is not available for verifying the surrogates in offline data-driven optimization, a support vector domain description that was designed for outlier detection is introduced to select a reliable solution. Empirical results on six dynamic optimization benchmark problems demonstrate the effectiveness of the proposed algorithm compared with four state-of-the-art data-driven optimization algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源