论文标题
抽象规则学习的记忆增强神经网络模型
A Memory-Augmented Neural Network Model of Abstract Rule Learning
论文作者
论文摘要
人类智能的特征是从经验中推断出抽象规则并将这些规则应用于新颖领域的非凡能力。因此,设计具有这种能力的神经网络算法是迈向具有更类似人类智力的深度学习系统的重要一步。但是,这样做是一个主要的挑战,有人认为这将要求神经网络使用明确的符号处理机制。在这项工作中,我们专注于神经网络的任意角色填充绑定的能力,将抽象“角色”与特定于上下文“填充剂”相关联的能力,这是许多人认为这是一个重要的机制,是学习和应用规则的能力的重要机制。使用Raven的渐进式矩阵的简化版本,人类智能的标志性测试,我们介绍了一个视觉问题解决任务的顺序公式,需要这种形式的绑定。此外,我们介绍了新兴的符号结合网络(ESBN),这是一种复发性神经网络模型,该模型学会使用外部内存作为绑定机制。该机制使类似符号的变量表示可以通过ESBN的训练过程出现,而无需明确的符号处理机械。我们从经验上证明,ESBN成功地学习了我们任务的基本抽象规则结构,并将这种规则结构完全概括为新颖的填充剂。
Human intelligence is characterized by a remarkable ability to infer abstract rules from experience and apply these rules to novel domains. As such, designing neural network algorithms with this capacity is an important step toward the development of deep learning systems with more human-like intelligence. However, doing so is a major outstanding challenge, one that some argue will require neural networks to use explicit symbol-processing mechanisms. In this work, we focus on neural networks' capacity for arbitrary role-filler binding, the ability to associate abstract "roles" to context-specific "fillers," which many have argued is an important mechanism underlying the ability to learn and apply rules abstractly. Using a simplified version of Raven's Progressive Matrices, a hallmark test of human intelligence, we introduce a sequential formulation of a visual problem-solving task that requires this form of binding. Further, we introduce the Emergent Symbol Binding Network (ESBN), a recurrent neural network model that learns to use an external memory as a binding mechanism. This mechanism enables symbol-like variable representations to emerge through the ESBN's training process without the need for explicit symbol-processing machinery. We empirically demonstrate that the ESBN successfully learns the underlying abstract rule structure of our task and perfectly generalizes this rule structure to novel fillers.