论文标题

Hilbert of Supper的动机Zeta功能

Motivic zeta function of the Hilbert schemes of points on a surface

论文作者

Pagano, Luigi

论文摘要

让$ k $成为一个离散价值的字段。令$ x \ rightarrow spec k $为具有微不足道的规范捆绑包的表面。在本文中,我们在整数$ r \ subseteq k $上构建了一个方案$ hilb^n(x)$的弱Néron模型。我们利用这项构造来计算$ z_x $的$ HILB^n(x)$的动机Zeta功能。我们确定$ z_ {hilb^n(x)} $的杆子,并研究其单片属性,表明,如果单莫罗莫(Monodromy)猜想以$ x $的价格持有,则它也以$ hilb^n(x)$的速度保留。 SIT $ k $ copus cum absoluto ualore distoto。 sit $ x \ rightarrow spec k $ leuigata cum cum canonico fasce extruenti $ \ mathcal {o} _x $。在Hoc Scripto中,neroniensia paradigmata $ hilb^n(x)$ shematum super super annulo intemorum in $ k $ corpo,$ r \ r \ subset k $,constituimus。 ex hoc,functionem zetam motiuicam $ z_ {hilb^n(x)} $,dato $ z_x $,computamus。 Suos Polos Statuimus et suam monodromicam oprietatem studemus,Coniectura monodromica,Quae super $ x $ ualet,ualere super $ hilb^n(x)$ quoque demostrando。

Let $K$ be a discretely-valued field. Let $X\rightarrow Spec K$ be a surface with trivial canonical bundle. In this paper we construct a weak Néron model of the schemes $Hilb^n(X)$ over the ring of integers $R\subseteq K$. We exploit this construction in order to compute the Motivic Zeta Function of $Hilb^n(X)$ in terms of $Z_X$. We determine the poles of $Z_{Hilb^n(X)}$ and study its monodromy property, showing that if the monodromy conjecture holds for $X$ then it holds for $Hilb^n(X)$ too. Sit $K$ corpus cum absoluto ualore discreto. Sit $ X\rightarrow Spec K$ leuigata superficies cum canonico fasce congruenti $\mathcal{O}_X$. In hoc scripto defecta Neroniensia paradigmata $Hilb^n(X)$ schematum super annulo integrorum in $K$ corpo, $R \subset K$, constituimus. Ex hoc, Functionem Zetam Motiuicam $Z_{Hilb^n(X)}$, dato $Z_X$, computamus. Suos polos statuimus et suam monodromicam proprietatem studemus, coniectura monodromica, quae super $X$ ualet, ualere super $Hilb^n(X)$ quoque demostrando.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源