论文标题

FMRI-内核回归:一种基于内核的RS-FMRI统计分析的方法,用于人群研究

fMRI-Kernel Regression: A Kernel-based Method for Pointwise Statistical Analysis of rs-fMRI for Population Studies

论文作者

Joshi, Anand A., Choi, Soyoung, Akrami, Haleh, Leahy, Richard M.

论文摘要

由于静止状态fMRI(RS-FMRI)信号的自发性质,跨主体比较,因此,RS-FMRI的小组研究具有挑战性。大多数现有的组比较方法都使用从fMRI时间序列中提取的功能,例如连接特征,独立组件分析(ICA)和功能连接密度(FCD)方法。但是,在小组研究中,尤其是在频谱障碍的情况下,单个地图集或代表性受试者的距离并不能完全反映可能位于多维光谱上的受试者之间的差异。此外,在代表所有受试者的情况下,可能不存在个人主题,甚至是平均地图集。在这里,我们描述了一种方法,该方法可以测量对受试者对的同步RS-FMRI信号,而不是单个参考点之间的成对距离。我们还提出了一种fMRI数据比较的方法,该方法利用了该生成的成对特征来建立径向基函数内核矩阵。此内核矩阵又用于执行RS-FMRI对临床变量的内核回归,例如认知或神经生理学性能得分。此方法为fMRI数据打开了一个新的点分析范例。我们通过使用RS-FMRI数据对皮质表面进行点式分析来证明该方法的应用,以识别与ADHD指数变异性相关的皮质区域。虽然在解剖学研究(例如皮质厚度分析)以及基于体量和张量的形态计量学及其变异方面很常见,但对于RS-FMRI缺乏这种方法,并且可以改善RS-FMRI用于小组研究的实用性。本文介绍的方法旨在填补这一空白。

Due to the spontaneous nature of resting-state fMRI (rs-fMRI) signals, cross-subject comparison and therefore, group studies of rs-fMRI are challenging. Most existing group comparison methods use features extracted from the fMRI time series, such as connectivity features, independent component analysis (ICA), and functional connectivity density (FCD) methods. However, in group studies, especially in the case of spectrum disorders, distances to a single atlas or a representative subject do not fully reflect the differences between subjects that may lie on a multi-dimensional spectrum. Moreover, there may not exist an individual subject or even an average atlas in such cases that is representative of all subjects. Here we describe an approach that measures pairwise distances between the synchronized rs-fMRI signals of pairs of subjects instead of to a single reference point. We also present a method for fMRI data comparison that leverages this generated pairwise feature to establish a radial basis function kernel matrix. This kernel matrix is used in turn to perform kernel regression of rs-fMRI to a clinical variable such as a cognitive or neurophysiological performance score of interest. This method opens a new pointwise analysis paradigm for fMRI data. We demonstrate the application of this method by performing a pointwise analysis on the cortical surface using rs-fMRI data to identify cortical regions associated with variability in ADHD index. While pointwise analysis methods are common in anatomical studies such as cortical thickness analysis and voxel- and tensor-based morphometry and its variants, such a method is lacking for rs-fMRI and could improve the utility of rs-fMRI for group studies. The method presented in this paper is aimed at filling this gap.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源