论文标题
学习终身学习
Learn-Prune-Share for Lifelong Learning
论文作者
论文摘要
在终身学习中,我们希望在存在依次到达的新分类任务中维护和更新模型(例如神经网络分类器)。在本文中,我们提出了一种学习奖(LPS)算法,该算法解决了灾难性遗忘,简约和知识同时再利用的挑战。 LP通过基于ADMM的修剪策略将网络分为特定于任务的分区。这在保持简约的同时不会导致忘记。此外,LPS将一种新颖的选择性知识共享方案集成到此ADMM优化框架中。这使自适应知识以端到端的方式共享。提供了两个终身学习基准数据集和具有挑战性的现实射频指纹数据集的全面实验结果,以证明我们方法的有效性。我们的实验表明,LP始终优于多个最先进的竞争对手。
In lifelong learning, we wish to maintain and update a model (e.g., a neural network classifier) in the presence of new classification tasks that arrive sequentially. In this paper, we propose a learn-prune-share (LPS) algorithm which addresses the challenges of catastrophic forgetting, parsimony, and knowledge reuse simultaneously. LPS splits the network into task-specific partitions via an ADMM-based pruning strategy. This leads to no forgetting, while maintaining parsimony. Moreover, LPS integrates a novel selective knowledge sharing scheme into this ADMM optimization framework. This enables adaptive knowledge sharing in an end-to-end fashion. Comprehensive experimental results on two lifelong learning benchmark datasets and a challenging real-world radio frequency fingerprinting dataset are provided to demonstrate the effectiveness of our approach. Our experiments show that LPS consistently outperforms multiple state-of-the-art competitors.