论文标题

AMINN:基于自动编码器的多个实例神经网络改善了多焦点肝转移的结果预测

AMINN: Autoencoder-based Multiple Instance Neural Network Improves Outcome Prediction of Multifocal Liver Metastases

论文作者

Chen, Jianan, Cheung, Helen M. C., Milot, Laurent, Martel, Anne L.

论文摘要

结直肠癌是最常见和致命的癌症之一,结直肠癌肝转移(CRLM)是结直肠癌患者的主要死亡原因。多焦点经常发生在CRLM中,但在CRLM结果预测中相对尚未探索。大多数现有的临床和成像生物标志物并未考虑所有多灶性病变的成像特征。在本文中,我们使用从对比增强的MRI中提取的放射性特征提取了基于端到端的自动编码器多个实例神经网络(AMINN),以预测多焦点CRLM患者的生存结果。具体而言,我们共同训练自动编码器以重建输入特征和多个实例网络,以通过汇总患者所有肿瘤病变的信息来做出预测。此外,我们还结合了两步归一化技术,以改善深度神经网络的训练,这是基于观察到的,即放射线特征的分布几乎总是偏向于偏斜。实验结果在经验上证实了我们的假设,即结合所有病变的成像特征可改善多焦点癌的结果预测。拟议的Aminn框架在ROC曲线(AUC)下达到了0.70的面积,比最佳基线方法高11.4%。基于Aminn的产出的风险评分在我们的多焦点CRLM队列中实现了卓越的预测。一系列消融研究证明了纳入所有病变并应用两步归一化的有效性。发布了Aminn的Keras实施。

Colorectal cancer is one of the most common and lethal cancers and colorectal cancer liver metastases (CRLM) is the major cause of death in patients with colorectal cancer. Multifocality occurs frequently in CRLM, but is relatively unexplored in CRLM outcome prediction. Most existing clinical and imaging biomarkers do not take the imaging features of all multifocal lesions into account. In this paper, we present an end-to-end autoencoder-based multiple instance neural network (AMINN) for the prediction of survival outcomes in multifocal CRLM patients using radiomic features extracted from contrast-enhanced MRIs. Specifically, we jointly train an autoencoder to reconstruct input features and a multiple instance network to make predictions by aggregating information from all tumour lesions of a patient. Also, we incorporate a two-step normalization technique to improve the training of deep neural networks, built on the observation that the distributions of radiomic features are almost always severely skewed. Experimental results empirically validated our hypothesis that incorporating imaging features of all lesions improves outcome prediction for multifocal cancer. The proposed AMINN framework achieved an area under the ROC curve (AUC) of 0.70, which is 11.4% higher than the best baseline method. A risk score based on the outputs of AMINN achieved superior prediction in our multifocal CRLM cohort. The effectiveness of incorporating all lesions and applying two-step normalization is demonstrated by a series of ablation studies. A Keras implementation of AMINN is released.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源