论文标题

交互式放射疗法目标描绘与3D融合的上下文传播

Interactive Radiotherapy Target Delineation with 3D-Fused Context Propagation

论文作者

Chao, Chun-Hung, Cheng, Hsien-Tzu, Ho, Tsung-Ying, Lu, Le, Sun, Min

论文摘要

层析成像医学成像上的总肿瘤体积(GTV)描述对于放射疗法计划和癌症诊断至关重要。卷积神经网络(CNN)已在自动3D医疗分割任务上占主导地位,包括在给定3D CT体积的放射疗法靶标。尽管CNN可能会提供可行的结果,但在临床情况下,由于CNNS在意外的患者病例上的不一致性,专家的双重检查和预测精致仍然是必要的。为了为专家提供一种有效的方法来修改CNN预测而无需重新培训模型,我们提出了3D融合的上下文传播,这将任何经过编辑的切片传播到整个3D卷。通过考虑高级特征图,辐射肿瘤学家只需要编辑几个切片即可指导校正并完善整个预测量。具体而言,我们利用激活技术的反向传播将用户向后传达到潜在空间,并根据更新和原始功能生成新的预测。在交互期间,我们提出的方法重复了现有的提取特征,并且不会改变现有的3D CNN模型体系结构,从而避免对其他预测的扰动。对鼻咽癌和食管癌的两个已发表的放疗靶标数据集进行了评估。实验结果表明,我们提出的方法能够进一步有效地从不同模型体系结构的互动输入中有效地改善现有的分割预测。

Gross tumor volume (GTV) delineation on tomography medical imaging is crucial for radiotherapy planning and cancer diagnosis. Convolutional neural networks (CNNs) has been predominated on automatic 3D medical segmentation tasks, including contouring the radiotherapy target given 3D CT volume. While CNNs may provide feasible outcome, in clinical scenario, double-check and prediction refinement by experts is still necessary because of CNNs' inconsistent performance on unexpected patient cases. To provide experts an efficient way to modify the CNN predictions without retrain the model, we propose 3D-fused context propagation, which propagates any edited slice to the whole 3D volume. By considering the high-level feature maps, the radiation oncologists would only required to edit few slices to guide the correction and refine the whole prediction volume. Specifically, we leverage the backpropagation for activation technique to convey the user editing information backwardly to the latent space and generate new prediction based on the updated and original feature. During the interaction, our proposed approach reuses the extant extracted features and does not alter the existing 3D CNN model architectures, avoiding the perturbation on other predictions. The proposed method is evaluated on two published radiotherapy target contouring datasets of nasopharyngeal and esophageal cancer. The experimental results demonstrate that our proposed method is able to further effectively improve the existing segmentation prediction from different model architectures given oncologists' interactive inputs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源