论文标题
工业物联网中的年龄优势分配:一种风险敏感的联邦学习方法
Age-Optimal Power Allocation in Industrial IoT: A Risk-Sensitive Federated Learning Approach
论文作者
论文摘要
这项工作研究了工业互联网中的实时环境监测方案,无线传感器主动收集环境数据并将其传输到控制器。我们采用金融数学中风险敏感性的概念作为目标,以最大程度地减少网络能量消耗的均值,方差和其他高阶统计数据,但受到信息时代(AOI)阈值违规阈值概率的限制,而AOI超过预定义的阈值。我们使用极值理论中的结果表征了极端的AOI稳定性,并通过将Lyapunov优化和联合学习原理编织在一起,提出了分布式功率分配方法(FL)。仿真结果表明,拟议的基于FL的分布式解决方案与集中式基线相当,同时消耗28.50%的系统能量,并且胜过其他基线。
This work studies a real-time environment monitoring scenario in the industrial Internet of things, where wireless sensors proactively collect environmental data and transmit it to the controller. We adopt the notion of risk-sensitivity in financial mathematics as the objective to jointly minimize the mean, variance, and other higher-order statistics of the network energy consumption subject to the constraints on the age of information (AoI) threshold violation probability and the AoI exceedances over a pre-defined threshold. We characterize the extreme AoI staleness using results in extreme value theory and propose a distributed power allocation approach by weaving in together principles of Lyapunov optimization and federated learning (FL). Simulation results demonstrate that the proposed FL-based distributed solution is on par with the centralized baseline while consuming 28.50% less system energy and outperforms the other baselines.