论文标题
斐波那契延伸的kagome人工旋冰的磁化动力学
Magnetization Dynamics of Fibonacci-Distorted Kagome Artificial Spin Ice
论文作者
论文摘要
我们为扭曲的2D kagome人造自旋冰介绍了铁磁共振(FMR)实验和微磁模拟的结果。扭曲的结构是通过在周期性蜂窝晶格的2D原始晶格翻译载体连续调节的,该结构是根据用于生成1D准晶体的上型纤维纤维序列的。实验数据和微磁模拟表明,斐波那契失真会导致FMR模式扩大和分裂为多个分支,这些分支伴随着段的长度和方向的增加,随着失真的增加而发展。当施加的场沿与段的净磁化相反的方向增加时,旋转波模式出现,消失或突然移动,以信号段磁力化逆转事件。这些结果表明,逆转事件的复杂行为以及FMR模式的明确定义的频率和频场斜率可以通过改变Aperiodic晶格失真的严重程度来精确调节。因此,这种扭曲的结构可以为设计复杂的宏伟系统设计提供一种新工具。
We present results of ferromagnetic resonance (FMR) experiments and micromagnetic simulations for a distorted, 2D Kagome artificial spin ice. The distorted structure is created by continuously modulating the 2D primitive lattice translation vectors of a periodic honeycomb lattice, according to an aperiodic Fibonacci sequence used to generate 1D quasicrystals. Experimental data and micromagnetic simulations show the Fibonacci distortion causes broadening and splitting of FMR modes into multiple branches, which accompany the increasing number of segment lengths and orientations that develop with increasing distortion. When the applied field is increased in the opposite direction to the net magnetization of a segment, spin wave modes appear, disappear or suddenly shift, to signal segment magnetization reversal events. These results show the complex behavior of reversal events, as well as well-defined frequencies and frequency-field slopes of FMR modes, can be precisely tuned by varying the severity of the aperiodic lattice distortion. This type of distorted structure could therefore provide a new tool for the design of complicated magnonic systems.