论文标题

Bohr半径,用于某些近距离谐波映射

Bohr radius for certain close-to-convex harmonic mappings

论文作者

Ahamed, Molla Basir, Allu, Vasudevarao, Halder, Himadri

论文摘要

令$ \ MATHCAL {H} $为单位磁盘$ \ Mathbb {d}中的谐波函数类别$ f = h+\ bar {g} $:= \ {z \ in \ in \ mathbb {c}:| z | | | | <1 \} $,其中$ h $ h $ h $和g $是$ h $ and $ h $ and $ h $ ins $ \ sancy in $ \ \ \ \ \ \ \ \ mathbb {让 $ \ MATHCAL {P} _ {\ MATHCAL {h}}}^{0}(α)= \ {f = h+\ overline {g} \ in \ Mathcal {h}:\ real( \ mbox {with} \; 0 \leqα<1,\; g^{\ prime}(0)= 0,\; z \ in \ mathbb {d} \} $$是由Li和Ponnusamy \ Cite {Injectivity e节}定义的近距离映射的类别。在本文中,我们获得了尖锐的Bohr-Rogosinski半径,改进了Bohr半径,并为$ \ Mathcal {P} _ {\ Mathcal {h}}}^0} {0}(α)$的类$ \ Mathcal {p} _ {p} _ {\ Mathcal {p} _ {p} _ {

Let $ \mathcal{H} $ be the class of harmonic functions $ f=h+\bar{g} $ in the unit disk $\mathbb{D}:=\{z\in\mathbb{C} : |z|<1\}$, where $ h $ and $ g $ are analytic in $ \mathbb{D} $. Let $$\mathcal{P}_{\mathcal{H}}^{0}(α)=\{f=h+\overline{g} \in \mathcal{H} : \real (h^{\prime}(z)-α)>|g^{\prime}(z)|\; \mbox{with}\; 0\leqα<1,\; g^{\prime}(0)=0,\; z \in \mathbb{D}\} $$ be the class of close-to-convex mappings defined by Li and Ponnusamy \cite{Injectivity section}. In this paper, we obtain the sharp Bohr-Rogosinski radius, improved Bohr radius and refined Bohr radius for the class $ \mathcal{P}_{\mathcal{H}}^{0}(α) $.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源