论文标题
高斯内核的schrödinger扰动的尖锐而普通的估计值
Sharp and plain estimates for Schrödinger perturbation of Gaussian kernel
论文作者
论文摘要
我们调查了schrödinger方程的基本解决方案$ \ partial_t u =(δ+v)\,u $在时间上具有局部尖锐的高斯估计值。我们将该类别与$ V $的班级进行比较,而当地的Plain Plain Gaussian估算所持的。我们专注于固定标志的$ V $,我们在加藤类中给出了$ V $的某些结论。
We investigate whether a fundamental solution of the Schrödinger equation $\partial_t u =(Δ+V)\, u$ has local in time sharp Gaussian estimates. We compare that class with the class of $V$ for which local in time plain Gaussian estimates hold. We concentrate on $V$ that have fixed sign and we present certain conclusions for $V$ in the Kato class.