论文标题
通过进行性改进网络的面具指导垫子
Mask Guided Matting via Progressive Refinement Network
论文作者
论文摘要
我们提出了掩盖(MG)垫片,这是一个坚固的垫子框架,以一般的粗掩膜作为指导。 MG Matting利用网络设计(PRN)设计,该设计鼓励Matting模型提供自我挖掘,以通过解码过程逐步完善不确定的区域。培训中还引入了一系列的指导面具扰动操作,以进一步增强其对外部指导的鲁棒性。我们表明,PRN可以概括为看不见类型的指导口罩,例如Trimap和低质量的Alpha Matte,使其适用于各种应用程序管道。此外,我们重新访问了用于垫片的前景颜色预测问题,并提出了一个令人惊讶的简单改进来解决数据集问题。对真实和合成基准测试的评估表明,MG Matting使用各种类型的指导输入来实现最先进的性能。代码和型号可在https://github.com/yucornetto/mgmatting上找到。
We propose Mask Guided (MG) Matting, a robust matting framework that takes a general coarse mask as guidance. MG Matting leverages a network (PRN) design which encourages the matting model to provide self-guidance to progressively refine the uncertain regions through the decoding process. A series of guidance mask perturbation operations are also introduced in the training to further enhance its robustness to external guidance. We show that PRN can generalize to unseen types of guidance masks such as trimap and low-quality alpha matte, making it suitable for various application pipelines. In addition, we revisit the foreground color prediction problem for matting and propose a surprisingly simple improvement to address the dataset issue. Evaluation on real and synthetic benchmarks shows that MG Matting achieves state-of-the-art performance using various types of guidance inputs. Code and models are available at https://github.com/yucornetto/MGMatting.