论文标题

偏心,旋转黑洞二进制的一体性,最多是第二个牛顿后订单

Integrability of eccentric, spinning black hole binaries up to second post-Newtonian order

论文作者

Tanay, Sashwat, Stein, Leo C., Ghersi, José T. Gálvez

论文摘要

二进制黑洞(BBHS)动力学的准确有效建模对于通过Ligo/Pirgo和Lisa通过重力波进行检测和参数估计至关重要。一般的BBH配置将使旋转和偏心轨道错位,偏心率在早期特别相关。对这些系统进行建模既是分析和数值挑战性的。即使1.5后牛顿后(PN)命令是Liouville的liouville,数值工作还是以2pn顺序证明了混乱,这阻碍了分析解决方案的存在。在本文中,我们在1.5pn和2pn订单下重新审视可集成性。在1.5pn时,我们构建了四个(五分之五)的动作积分。在2pn时,我们通过明确构建五个相互交流的运动常数,表明该系统确实是可集成的 - 但在扰动意义上。由于具有KAM定理,这与过去混乱的数值证明是一致的。我们的方法扩展到更高的PN订单,为通用偏心,旋转BBH问题的完全分析解决方案打开了大门。

Accurate and efficient modeling of the dynamics of binary black holes (BBHs) is crucial to their detection and parameter estimation through gravitational waves, both with LIGO/Virgo and LISA. General BBH configurations will have misaligned spins and eccentric orbits, eccentricity being particularly relevant at early times. Modeling these systems is both analytically and numerically challenging. Even though the 1.5 post-Newtonian (PN) order is Liouville integrable, numerical work has demonstrated chaos at 2PN order, which impedes the existence of an analytic solution. In this article we revisit integrability at both 1.5PN and 2PN orders. At 1.5PN, we construct four (out of five) action integrals. At 2PN, we show that the system is indeed integrable - but in a perturbative sense - by explicitly constructing five mutually-commuting constants of motion. Because of the KAM theorem, this is consistent with the past numerical demonstration of chaos. Our method extends to higher PN orders, opening the door for a fully analytical solution to the generic eccentric, spinning BBH problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源