论文标题

加速器应用程序模拟中的模型不确定性

Model uncertainty in accelerator application simulations

论文作者

Pronskikh, Vitaly

论文摘要

蒙特卡洛核反应和运输代码被广泛用于设计基于加速器的核物理实验。同时,进行了许多实验以验证蒙特卡罗代码,这些代码可用于设计全尺度核电应用或设计新基准实验。专用模型基准研究研究了广泛的核反应和数量。这些示例包括由GEV范围HADRON与单异位靶靶的相互作用产生的同位素形成或二级粒子通量,可用于评估模型的各自系统不确定性。这种基准研究以及过去几十年来各组进行的许多核应用实验和模拟,使我们能够汲取方法论课程。在这项工作中,基于可用的实验数据确定的模型不确定性使我们能够确定从业者专业知识的影响以及代码(用户访问微尺度参数)对不确定性范围的影响。我们发现,在执行模拟方面经验丰富的代码开发人员或用户进行模拟的情况下,实验量比的模型通常与专用基准研究确定的限制一致。在其他情况下,比率通常往往较小(模型误差低估)或较大(模型误差的高估)。提出了上述效应的合理解释。

Monte-Carlo nuclear reaction and transport codes are widely used to devise accelerator-based nuclear physics experiments; at the same time, many experiments are performed to validate the Monte-Carlo codes, which can be used for the design of full-scale nuclear power applications or the design of new benchmark experiments. Dedicated model benchmark studies investigate a broad range of nuclear reactions and quantities. Examples of these include isotope formation or secondary particle fluxes that result from the interactions of GeV-range hadrons with monoisotopic targets, which can be used to assess the respective systematic uncertainty of models. Such benchmark studies, as well as many nuclear application experiments and simulations carried out by various groups over the last few decades, enable us to draw methodological lessons. In this work, model uncertainty determined based on available experimental data allow us to identify the effects of practitioner expertise as well as the design of codes (user access to micro-scale parameters) on the range of uncertainties. We found that in cases when simulations are performed by code developers or users that are very experienced in performing simulations, the model to experiment quantity ratios generally agree with the limits determined by dedicated benchmark studies. In other cases, the ratios generally tend to be either smaller (underestimation of model error) or larger (overestimation of model error). A plausible explanation of the aforementioned effects is suggested.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源