论文标题

Aiforcovid:预测Covid-19患者的临床结局,将AI应用于胸部X射线。意大利多中心研究

AIforCOVID: predicting the clinical outcomes in patients with COVID-19 applying AI to chest-X-rays. An Italian multicentre study

论文作者

Soda, Paolo, D'Amico, Natascha Claudia, Tessadori, Jacopo, Valbusa, Giovanni, Guarrasi, Valerio, Bortolotto, Chandra, Akbar, Muhammad Usman, Sicilia, Rosa, Cordelli, Ermanno, Fazzini, Deborah, Cellina, Michaela, Oliva, Giancarlo, Callea, Giovanni, Panella, Silvia, Cariati, Maurizio, Cozzi, Diletta, Miele, Vittorio, Stellato, Elvira, Carrafiello, Gian Paolo, Castorani, Giulia, Simeone, Annalisa, Preda, Lorenzo, Iannello, Giulio, Del Bue, Alessio, Tedoldi, Fabio, Alì, Marco, Sona, Diego, Papa, Sergio

论文摘要

最近的流行病学数据报告称,全世界有超过5300万人感染了SARS-COV-2,导致130万人死亡。在鉴定出第一次感染后的几个月后,该疾病的传播迅速,医院资源短缺很快就成为一个问题。在这项工作中,我们调查了胸部X射线(CXR)是否可以用作早期鉴定有严重预后的患者(例如重症监护或死亡)的可能工具。 CXR是一种放射学技术,与计算机断层扫描(CT)相比,它更简单,更快,更广泛,并且诱导较低的辐射剂量。我们提出了一个数据集,其中包括2020年春季第一次Covid-19急诊期间,六家意大利医院从820名患者收集的数据。该数据集包括CXR图像,几个临床属性和临床结果。我们研究了人工智能预测此类患者预后的潜力,区分严重和轻度病例,从而为其他研究人员和从业者提供了基线参考。为此,我们提出了三种方法,这些方法使用从CXR图像中提取的特征,无论是手工制作的还是由卷积神经元网络进行的,然后与临床数据集成在一起。详尽的评估表明,在10倍和一场中心的交叉验证中表现出色,这意味着临床数据和图像有可能为患者和医院资源的管理提供有用的信息。

Recent epidemiological data report that worldwide more than 53 million people have been infected by SARS-CoV-2, resulting in 1.3 million deaths. The disease has been spreading very rapidly and few months after the identification of the first infected, shortage of hospital resources quickly became a problem. In this work we investigate whether chest X-ray (CXR) can be used as a possible tool for the early identification of patients at risk of severe outcome, like intensive care or death. CXR is a radiological technique that compared to computed tomography (CT) it is simpler, faster, more widespread and it induces lower radiation dose. We present a dataset including data collected from 820 patients by six Italian hospitals in spring 2020 during the first COVID-19 emergency. The dataset includes CXR images, several clinical attributes and clinical outcomes. We investigate the potential of artificial intelligence to predict the prognosis of such patients, distinguishing between severe and mild cases, thus offering a baseline reference for other researchers and practitioners. To this goal, we present three approaches that use features extracted from CXR images, either handcrafted or automatically by convolutional neuronal networks, which are then integrated with the clinical data. Exhaustive evaluation shows promising performance both in 10-fold and leave-one-centre-out cross-validation, implying that clinical data and images have the potential to provide useful information for the management of patients and hospital resources.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源