论文标题

非平衡相互作用的整合系统中的Euler级动力学波动

Euler-scale dynamical fluctuations in non-equilibrium interacting integrable systems

论文作者

Perfetto, Gabriele, Doyon, Benjamin

论文摘要

我们得出了一个与任意弹道运输的保守电荷相关的时间集成电流的缩放累积产生函数的精确公式。我们的结果依赖于相互作用,多体,可集成模型的欧拉斯级描述,该模型是由广义流体动力学给出的平衡的,以及大偏差理论。至关重要的是,我们的发现通过考虑相互作用系统中的不均匀和动态初始状态来扩展先前的研究。我们介绍了时间整合电流的前三个累积物的精确表达式。考虑到我们对缩放累积生成函数的一般表达的非相互作用极限,我们进一步表明,对于分区协议初始状态,我们的结果与先前的文献结果一致。鉴于广义流体动力学的普遍性,对缩放累积生成函数获得的表达式适用于遵守经典和量子的任何相互作用的可相互作用的集成模型。

We derive an exact formula for the scaled cumulant generating function of the time-integrated current associated to an arbitrary ballistically transported conserved charge. Our results rely on the Euler-scale description of interacting, many-body, integrable models out of equilibrium given by the generalized hydrodynamics, and on the large deviation theory. Crucially, our findings extend previous studies by accounting for inhomogeneous and dynamical initial states in interacting systems. We present exact expressions for the first three cumulants of the time-integrated current. Considering the non-interacting limit of our general expression for the scaled cumulant generating function, we further show that for the partitioning protocol initial state our result coincides with previous results of the literature. Given the universality of the generalized hydrodynamics, the expression obtained for the scaled cumulant generating function is applicable to any interacting integrable model obeying the hydrodynamic equations, both classical and quantum.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源