论文标题

异构和不确定的网络环境中的高级算法

Advanced Algorithms in Heterogeneous and Uncertain Networking Environments

论文作者

Cohen, Itamar

论文摘要

当今各处和每个范围内都使用通信网络:从家里的物联网(IoT)网络开始,通过校园和企业网络开始,再到互联网提供商的一级网络。因此,网络设备应在处理时间,带宽能耗,截止日期等方面支持大量具有高度异质特征的任务。评估这些特征以及当前可用资源的处理数量,需要分析所有到达的输入,从众多远程设备中收集信息以及整合所有这些信息。在当今的网络环境中,实时执行所有这些任务非常具有挑战性,其特征是延迟的紧密界限和始终增加数据速率。因此,网络算法通常应在不确定性下做出决策。 这项工作解决了在异质和不确定的网络环境中的优化性能。我们首先详细介绍异质性和不确定性的来源,并表明在网络设计的所有层中出现不确定性,包括执行任务所需的时间;可用资源的数量;以及成功完成任务的预期收益。接下来,我们调查当前解决方案并显示其局限性。基于这些见解,我们开发了一般设计概念来应对异质性和不确定性,然后使用这些概念来设计实用算法。对于我们的每种算法,我们提供严格的数学分析,从而显示出最坏的性能保证。最后,我们在各种输入轨迹上实现并运行建议的算法,从而获得了有关我们的算法设计原理的进一步见解。

Communication networks are used today everywhere and on every scale: starting from small Internet of Things (IoT) networks at home, via campus and enterprise networks, and up to tier-one networks of Internet providers. Accordingly, network devices should support a plethora of tasks with highly heterogeneous characteristics in terms of processing time, bandwidth energy consumption, deadlines and so on. Evaluating these characteristics and the amount of currently available resources for handling them requires analyzing all the arriving inputs, gathering information from numerous remote devices, and integrating all this information. Performing all these tasks in real time is very challenging in today's networking environments, which are characterized by tight bounds on the latency, and always-increasing data rates. Hence, network algorithms should typically make decisions under uncertainty. This work addresses optimizing performance in heterogeneous and uncertain networking environments. We begin by detailing the sources of heterogeneity and uncertainty and show that uncertainty appears in all layers of network design, including the time required to perform a task; the amount of available resources; and the expected gain from successfully completing a task. Next, we survey current solutions and show their limitations. Based on these insights we develop general design concepts to tackle heterogeneity and uncertainty, and then use these concepts to design practical algorithms. For each of our algorithms, we provide rigorous mathematical analysis, thus showing worst-case performance guarantees. Finally, we implement and run the suggested algorithms on various input traces, thus obtaining further insights as to our algorithmic design principles.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源