论文标题
非还原性几何不变理论和多项式
Non-reductive geometric invariant theory and Thom polynomials
论文作者
论文摘要
我们结合了最近开发的非还原性几何不变理论商的交叉理论,并结合了模棱两可的定位,以证明莫林奇异性多项式的公式。这些公式仅使用某些分区Polyhedra的复曲面组合学,我们的新方法规避了对现有模型的鲍尔几何形状不足的理解。
We combine recently developed intersection theory for non-reductive geometric invariant theoretic quotients with equivariant localisation to prove a formula for Thom polynomials of Morin singularities. These formulas use only toric combinatorics of certain partition polyhedra, and our new approach circumvents the poorly understood Borel geometry of existing models.