论文标题

遥感应用程序的非线性分布回归

Nonlinear Distribution Regression for Remote Sensing Applications

论文作者

Adsuara, Jose E., Pérez-Suay, Adrián, Muñoz-Marí, Jordi, Mateo-Sanchis, Anna, Piles, Maria, Camps-Valls, Gustau

论文摘要

在许多遥感应用程序中,人们都想从观察值估算感兴趣的变量或参数。当目标变量以与遥感观测值相匹配的分辨率可用时,可以很容易地使用标准算法,例如神经网络,随机森林或高斯过程来关联两者。但是,我们经常遇到仅在组级别上可用的目标变量,即与许多远程感知的观测值相关联。此问题设置在统计信息和机器学习中已知为{\ em多重实例学习}或{\ em分布回归}。本文介绍了一种非线性(基于内核)的分布回归方法,该方法解决了先前的问题,而无需对分组数据的统计数据进行任何假设。提出的配方考虑了在繁殖Hilbert空间中的分布嵌入,并在其中进行经验手段进行标准的最小二乘回归。还提供了一个灵活的版本来处理不同维度和样本量的多源数据。它允许使用每个传感器的天然空间分辨率,以避免需要对匹配程序。注意该方法的巨大计算成本,我们通过随机傅立叶功能引入了一个有效的版本,以应对数百万分和组。

In many remote sensing applications one wants to estimate variables or parameters of interest from observations. When the target variable is available at a resolution that matches the remote sensing observations, standard algorithms such as neural networks, random forests or Gaussian processes are readily available to relate the two. However, we often encounter situations where the target variable is only available at the group level, i.e. collectively associated to a number of remotely sensed observations. This problem setting is known in statistics and machine learning as {\em multiple instance learning} or {\em distribution regression}. This paper introduces a nonlinear (kernel-based) method for distribution regression that solves the previous problems without making any assumption on the statistics of the grouped data. The presented formulation considers distribution embeddings in reproducing kernel Hilbert spaces, and performs standard least squares regression with the empirical means therein. A flexible version to deal with multisource data of different dimensionality and sample sizes is also presented and evaluated. It allows working with the native spatial resolution of each sensor, avoiding the need of match-up procedures. Noting the large computational cost of the approach, we introduce an efficient version via random Fourier features to cope with millions of points and groups.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源