论文标题
Majoraana编织门,用于一维几何形状中的拓扑超导体
Majorana braiding gates for topological superconductors in a one dimensional geometry
论文作者
论文摘要
我们提出和分析一个能够在一维拓扑超导体(1DTS)中使用Majorana零模式(MZM)执行拓扑量子计算的物理系统。在1DT中实现量子门的主要方法之一是使用t界面,这允许人们操纵MZM,例如实现编织。在本文中,我们提出了一种纯粹的一维几何形状,不需要t界面的方案,而不是用辅助量子量子替换。我们表明,这允许一个人执行一个和两个逻辑量子$ z $旋转。我们首先设计了完全基于1DTS中本地交互的拓扑保护的逻辑$ z $ -GATE。使用与拓扑超导体耦合的辅助量子标筒,我们将$ z $ - 盖特扩展到具有部分拓扑保护的单个和多级任意旋转。最后,为了执行通用量子计算,我们介绍了一种执行任意统一旋转的方案,尽管没有拓扑保护。我们基于统一辫子开发形式主义,该辫子在1DTS系统的不同拓扑阶段之间产生过渡。统一形式主义可以简单地转换为等效的绝热方案,我们在数值上模拟并表明应该使用合理的参数可以进行高保真操作。
We propose and analyze a physical system capable of performing topological quantum computation with Majorana zero modes (MZM) in a one-dimensional topological superconductor (1DTS). One of the leading methods to realize quantum gates in 1DTS is to use T-junctions, which allows one to maneuver MZMs such as to achieve braiding. In this paper, we propose a scheme that is in a purely one-dimensional geometry and does not require T-junctions, instead replacing it with an auxiliary qubit. We show that this allows one to perform one and two logical qubit $ Z $ rotations. We first design a topologically protected logical $Z$-gate based entirely on local interactions within the 1DTS. Using an auxiliary qubit coupled to the topological superconductors, we extend the $Z$-gate to single and multiqubit arbitrary rotations with partial topological protection. Finally, to perform universal quantum computing, we introduce a scheme for performing arbitrary unitary rotations, albeit without topological protection. We develop a formalism based on unitary braids which creates transitions between different topological phases of the 1DTS system. The unitary formalism can be simply converted to an equivalent adiabatic scheme, which we numerically simulate and show that high fidelity operations should be possible with reasonable parameters.