论文标题
如何增强嘈杂信息的量子生成的对抗性学习
How to enhance quantum generative adversarial learning of noisy information
论文作者
论文摘要
Quantum机器学习是当今机器学习符合量子信息科学的地方。为了实施这种新型量子技术的新范式,我们仍然需要对其潜在机制有更深入的了解,然后才提出新算法以解决实际问题。在这种情况下,量子生成的对抗性学习是使用量子设备进行量子估计或生成机器学习任务的有前途的策略。但是,尚未详细研究其培训过程的融合行为,这对于对量子处理器的实际实施至关重要。确实,我们在这里展示了在优化过程中如何发生不同的训练问题,例如极限周期的出现。在混合量子状态的情况下,后者可能会显着延长收敛时间,在已经可用的嘈杂的中间尺度量子设备中起着至关重要的作用。然后,我们提出了新的策略,以在任何运营制度中实现更快的融合。我们的结果为此类混合经典量子协议的新实验证明铺平了道路,从而可以评估与经典同行相比的潜在优势。
Quantum Machine Learning is where nowadays machine learning meets quantum information science. In order to implement this new paradigm for novel quantum technologies, we still need a much deeper understanding of its underlying mechanisms, before proposing new algorithms to feasibly address real problems. In this context, quantum generative adversarial learning is a promising strategy to use quantum devices for quantum estimation or generative machine learning tasks. However, the convergence behaviours of its training process, which is crucial for its practical implementation on quantum processors, have not been investigated in detail yet. Indeed here we show how different training problems may occur during the optimization process, such as the emergence of limit cycles. The latter may remarkably extend the convergence time in the scenario of mixed quantum states playing a crucial role in the already available noisy intermediate scale quantum devices. Then, we propose new strategies to achieve a faster convergence in any operating regime. Our results pave the way for new experimental demonstrations of such hybrid classical-quantum protocols allowing to evaluate the potential advantages over their classical counterparts.