论文标题
COMMPOOL:用于分层图表示的可解释的图形池框架学习
CommPOOL: An Interpretable Graph Pooling Framework for Hierarchical Graph Representation Learning
论文作者
论文摘要
近年来,见证了分层图池神经网络(HGPNN)的出现和繁荣,这些神经网络(HGPNN)是图形级别任务(例如图形分类)的有效图表学习方法。但是,当前的HGPNN并未充分利用该图的内在结构(例如社区结构)。此外,很难解释现有HGPNN中的合并操作。在本文中,我们提出了一个新的可解释的图形池框架-Commpool,可以捕获和保留图表表示过程中图的层次结构。具体而言,Commpool中提出的社区合并机制利用一种无监督的方法以可解释的方式捕获图形的固有社区结构。 Commpool是一个通用且灵活的框架,用于层次图表示学习,可以进一步促进各种图形级任务。与最新的基线方法相比,对五个公共基准数据集和一个合成数据集的评估表明,图形分类中的Commpool在图形分类中的出色表现以及其在捕获和保留图形社区结构方面的有效性。
Recent years have witnessed the emergence and flourishing of hierarchical graph pooling neural networks (HGPNNs) which are effective graph representation learning approaches for graph level tasks such as graph classification. However, current HGPNNs do not take full advantage of the graph's intrinsic structures (e.g., community structure). Moreover, the pooling operations in existing HGPNNs are difficult to be interpreted. In this paper, we propose a new interpretable graph pooling framework - CommPOOL, that can capture and preserve the hierarchical community structure of graphs in the graph representation learning process. Specifically, the proposed community pooling mechanism in CommPOOL utilizes an unsupervised approach for capturing the inherent community structure of graphs in an interpretable manner. CommPOOL is a general and flexible framework for hierarchical graph representation learning that can further facilitate various graph-level tasks. Evaluations on five public benchmark datasets and one synthetic dataset demonstrate the superior performance of CommPOOL in graph representation learning for graph classification compared to the state-of-the-art baseline methods, and its effectiveness in capturing and preserving the community structure of graphs.