论文标题

XXZ量子磁铁的XY状态中的彩色点

Colorful points in the XY regime of XXZ quantum magnets

论文作者

Pal, Santanu, Sharma, Prakash, Changlani, Hitesh J., Pujari, Sumiran

论文摘要

在XXZ Heisenberg模型相图的XY机制中,我们证明了磁有序相的起源受到具有量子古典对应关系的精确量子着色接地状态的可溶点的存在。对于正方形和三角形晶格磁铁,使用精确的对角度和密度矩阵恢复归一化组计算,我们表明,在极端XY策略中可溶剂可溶液的物理学有序的物理学,以$ \ frac {j_z} $ \ frac {j_z} {J_ \ PERP} = - \ frac {1} {2} $分别使用$ J_ \ PERP> 0 $,绝热地扩展到更多的isotropic sengime $ \ frac $ \ frac {J_z} {J_ \ perp} {J_ \ perp} {我们强调着色接地状态的投影结构,以计算固定磁化扇区中的相关器,从而使静态自旋结构因子和相关比的特征有了了解。这些发现与著名的一维Majumdar-Ghosh模型的各向异性概括形成鲜明对比,该模型也被认为是(基态)可解决的。对于此模型,确切的二聚体和三色基态都存在于$ \ frac {j_z} {j_ \ perp} = - \ frac {1} {2} $,但只有两个二聚体的基础状态可以生存,可为任何$ \ frac {j_z} {j_ \ perp} {

In the XY regime of the XXZ Heisenberg model phase diagram, we demonstrate that the origin of magnetically ordered phases is influenced by the presence of solvable points with exact quantum coloring ground states featuring a quantum-classical correspondence. Using exact diagonalization and density matrix renormalization group calculations, for both the square and the triangular lattice magnets, we show that the ordered physics of the solvable points in the extreme XY regime, at $\frac{J_z}{J_\perp}=-1$ and $\frac{J_z}{J_\perp}=-\frac{1}{2}$ respectively with $J_\perp > 0$, adiabatically extends to the more isotropic regime $\frac{J_z}{J_\perp} \sim 1$. We highlight the projective structure of the coloring ground states to compute the correlators in fixed magnetization sectors which enables an understanding of the features in the static spin structure factors and correlation ratios. These findings are contrasted with an anisotropic generalization of the celebrated one-dimensional Majumdar-Ghosh model, which is also found to be (ground state) solvable. For this model, both exact dimer and three-coloring ground states exist at $\frac{J_z}{J_\perp}=-\frac{1}{2}$ but only the two dimer ground states survive for any $\frac{J_z}{J_\perp} > -\frac{1}{2}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源