论文标题

数据驱动的方法,用于使用飞机动力学和多层感知器神经网络估算快速访问记录器的飞机质量

Data-driven Method for Estimating Aircraft Mass from Quick Access Recorder using Aircraft Dynamics and Multilayer Perceptron Neural Network

论文作者

He, Xinyu, He, Fang, Zhu, Xinting, Li, Lishuai

论文摘要

从安全管理和绩效优化的角度来看,准确的飞机质量估计对于航空公司至关重要。用乘客和行李超载飞机可能会导致安全危险。相比之下,没有完全利用飞机的有效载荷能力破坏其运营效率和航空公司的盈利能力。但是,每次运营飞行的飞机质量的准确确定是不可行的,因为称量每个飞机组件(包括有效载荷)是不切实际的。现有的飞机质量估计方法取决于飞机和发动机的性能参数,这些参数通常被视为专有信息。此外,这些参数的值在不同的工作条件下有所不同,而其他参数可能会遇到较大的估计错误。本文提出了一种数据驱动的方法,涉及使用快速访问录音机(QAR)-Aircraft上的数字飞行数据记录器,以记录每次飞行期间初始飞机攀爬质量。该方法要求用户使用物理模型在QAR记录的其他数千个中选择适当的参数。随后将所选数据处理并作为多层感知神经网络的输入提供,用于构建初始攀登飞机质量预测的模型。因此,提出的方法提供了基于模型的和数据驱动的方法的优势,以进行飞机质量估计。由于此方法不明确依赖任何飞机或发动机参数,因此普遍适用于所有飞机类型。在这项研究中,提出的方法应用于一组波音777-300ER飞机,其结果证明了合理的准确性。航空公司可以使用此工具更好地利用飞机的有效载荷。

Accurate aircraft-mass estimation is critical to airlines from the safety-management and performance-optimization viewpoints. Overloading an aircraft with passengers and baggage might result in a safety hazard. In contrast, not fully utilizing an aircraft's payload-carrying capacity undermines its operational efficiency and airline profitability. However, accurate determination of the aircraft mass for each operating flight is not feasible because it is impractical to weigh each aircraft component, including the payload. The existing methods for aircraft-mass estimation are dependent on the aircraft- and engine-performance parameters, which are usually considered proprietary information. Moreover, the values of these parameters vary under different operating conditions while those of others might be subject to large estimation errors. This paper presents a data-driven method involving use of the quick access recorder (QAR)-a digital flight-data recorder-installed on all aircrafts to record the initial aircraft climb mass during each flight. The method requires users to select appropriate parameters among several thousand others recorded by the QAR using physical models. The selected data are subsequently processed and provided as input to a multilayer perceptron neural network for building the model for initial-climb aircraft-mass prediction. Thus, the proposed method offers the advantages of both the model-based and data-driven approaches for aircraft-mass estimation. Because this method does not explicitly rely on any aircraft or engine parameter, it is universally applicable to all aircraft types. In this study, the proposed method was applied to a set of Boeing 777-300ER aircrafts, the results of which demonstrated reasonable accuracy. Airlines can use this tool to better utilize aircraft's payload.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源