论文标题
binning是犯罪的(超新星版):自我校准在宇宙学分析中的影响IA Supernovae
Binning is Sinning (Supernova Version): The Impact of Self-Calibration in Cosmological Analyses with Type Ia Supernovae
论文作者
论文摘要
IA型超新星(SNIA)的最新宇宙学分析(例如JLA,Pantheon)已将系统的不确定性传播到协方差矩阵中,并在红移空间中进行了分组或平滑系统。我们证明,通过使用无键和不平滑的协方差矩阵,这些分析的系统错误预算可以提高$ \ sim1.5 \ times $。为了理解这一点,我们采用了一种单独的方法,该方法同时适合宇宙参数和其他自我校准的比例参数,从而限制了每个系统的大小。我们表明,协方差 - 矩阵方法和比例参数方法产生同等的结果,这意味着在这两种情况下,数据都可以自我校准某些系统的不确定性,但是当信息在红移空间中划分或平滑时,这种能力会受到阻碍。我们在当前分析中回顾了最高的系统不确定性,发现在未链接的情况下,系统不确定性的减少取决于系统性是否与宇宙学模型的变化以及是否可以通过SN属性和亮度之间的其他相关性来描述系统性。此外,我们表明,自校准的力量随数据集的大小而增加,这为即将分析光学分类样本的分析提供了巨大的机会,例如时空和时间(LSST)和Nancy Grace Roman Roman Roman望远镜(NGRST)的样本。但是,要利用大型,光度分类的样本中的自我校准,我们必须首先解决当前使用的光度法方法中所需的binning的问题。
Recent cosmological analyses (e.g., JLA, Pantheon) of Type Ia Supernova (SNIa) have propagated systematic uncertainties into a covariance matrix and either binned or smoothed the systematic vectors in redshift space. We demonstrate that systematic error budgets of these analyses can be improved by a factor of $\sim1.5\times$ with the use of unbinned and unsmoothed covariance matrices. To understand this, we employ a separate approach that simultaneously fits for cosmological parameters and additional self-calibrating scale parameters that constrain the size of each systematic. We show that the covariance-matrix approach and scale-parameter approach yield equivalent results, implying that in both cases the data can self-calibrate certain systematic uncertainties, but that this ability is hindered when information is binned or smoothed in redshift space. We review the top systematic uncertainties in current analyses and find that the reduction of systematic uncertainties in the unbinned case depends on whether a systematic is consistent with varying the cosmological model and whether or not the systematic can be described by additional correlations between SN properties and luminosity. Furthermore, we show that the power of self-calibration increases with the size of the dataset, which presents a tremendous opportunity for upcoming analyses of photometrically classified samples, like those of Legacy Survey of Space and Time (LSST) and the Nancy Grace Roman Telescope (NGRST). However, to take advantage of self-calibration in large, photometrically-classified samples, we must first address the issue that binning is required in currently-used photometric methodologies.