论文标题

自主室内导航的LIDAR细分的自我监督学习

Self-Supervised Learning of Lidar Segmentation for Autonomous Indoor Navigation

论文作者

Thomas, Hugues, Agro, Ben, Gridseth, Mona, Zhang, Jian, Barfoot, Timothy D.

论文摘要

我们提出了一种自我监督的学习方法,用于激光镜的语义分割。我们的方法用于训练深点云分割体系结构,而无需任何人类注释。注释过程与同时定位和映射(SLAM)和射线追踪算法的组合自动化。通过在同一环境中进行多个导航会话,我们能够分别识别永久性结构,例如墙壁,以及短期和长期可移动物体(例如人和表)。然后可以使用经过训练的网络来预测这些语义标签。我们展示了我们方法随着时间的推移改善的能力,从一个会话到下一个会话。借助语义过滤的点云,我们的机器人可以在更复杂的场景中导航,当将其添加到训练池中时,它有助于改善我们的网络预测。我们提供对我们网络预测的见解,并表明我们的方法还可以改善常见定位技术的性能。

We present a self-supervised learning approach for the semantic segmentation of lidar frames. Our method is used to train a deep point cloud segmentation architecture without any human annotation. The annotation process is automated with the combination of simultaneous localization and mapping (SLAM) and ray-tracing algorithms. By performing multiple navigation sessions in the same environment, we are able to identify permanent structures, such as walls, and disentangle short-term and long-term movable objects, such as people and tables, respectively. New sessions can then be performed using a network trained to predict these semantic labels. We demonstrate the ability of our approach to improve itself over time, from one session to the next. With semantically filtered point clouds, our robot can navigate through more complex scenarios, which, when added to the training pool, help to improve our network predictions. We provide insights into our network predictions and show that our approach can also improve the performances of common localization techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源