论文标题
石墨烯基光子设备的晶圆尺度整合
Wafer-scale integration of graphene-based photonic devices
论文作者
论文摘要
石墨烯和相关材料可能导致下一代光子学和光电子学的破坏性进步。挑战是设计增长,转移和制造方案,以在晶圆规模上提供可靠的性能,提供高(> 5,000 cm2 V-1 S-1)的移动设备。在这里,我们提出了在光子电路中集成石墨烯的流程。这取决于包含高达〜12000个单个单晶(SCS)的单层石墨烯(SLG)矩阵的化学蒸气沉积(CVD),该矩阵生长以匹配光子电路中设备的几何配置。接下来是一种转移方法,可确保覆盖设备区域的80%以上,并具有多达150毫米晶片的完整性,室温迁移率〜5000 cm2 V-1 S-1。我们使用此过程流程来证明具有调节效率的双SLG电吸附调制器〜0.25,0.45,0.75,1.75,1 dB V-1,用于设备长度〜30、60、60、90、120μm。数据速率高达20 Gbps。用单层HBN的封装用于在SI3N4的血浆增强CVD期间保护SLG,以确保可重复的设备性能。我们的完整过程流量(从增长到设备制造)使基于石墨烯的光子设备的商业实现。
Graphene and related materials can lead to disruptive advances in next generation photonics and optoelectronics. The challenge is to devise growth, transfer and fabrication protocols providing high (>5,000 cm2 V-1 s-1) mobility devices with reliable performance at the wafer scale. Here, we present a flow for the integration of graphene in photonics circuits. This relies on chemical vapour deposition (CVD) of single layer graphene (SLG) matrices comprising up to ~12000 individual single crystals (SCs), grown to match the geometrical configuration of the devices in the photonic circuit. This is followed by a transfer approach which guarantees coverage over ~80% of the device area, and integrity for up to 150 mm wafers, with room temperature mobility ~5000 cm2 V-1 s-1. We use this process flow to demonstrate double SLG electro-absorption modulators with modulation efficiency ~0.25, 0.45, 0.75, 1 dB V-1 for device lengths ~30, 60, 90, 120 μm. The data rate is up to 20 Gbps. Encapsulation with single-layer hBN is used to protected SLG during plasma-enhanced CVD of Si3N4, ensuring reproducible device performance. Our full process flow (from growth to device fabrication) enables the commercial implementation of graphene-based photonic devices.