论文标题

有限尺寸对量子染色体动力学手性相变的影响

Finite Size Effects on the Chiral Phase Transition of Quantum Chromodynamics

论文作者

Wan, Shen-Song, Li, Daize, Zhang, Bonan, Ruggieri, Marco

论文摘要

我们研究周期性边界条件对手性对称性破坏及其在量子染色体动力学中的恢复的影响。作为夸克冷凝物有效潜力的有效模型,我们使用Quark-Meson模型,而该理论则以$ L $的三次盒子量化。在为真空夸克环指定了重新归一化的处方后,我们在有限温度,$ t $和夸克化学势下研究冷凝物,$μ$。我们发现降低$ L $会导致手性对称性破坏的催化。零模式的激发在低温和高密度下导致冷凝水的跃升,我们建议将其解释为气体液相变,在手性对称性破碎相(强子气体)和手性对称性恢复相之间发生(Quark Matter)。我们以重量的增加以及顺序参数波动的相关长度来表征这个中间阶段:对于足够小的$ l $,相关域占据了系统体积的很大一部分,并且波动与关键区域的波动相当。由于这些原因,我们将此阶段称为{\ IT亚临界液体}。我们绘制的定性图片与基于类似有效模型的先前研究一致。我们还阐明了有关临界温度与不同型号中$ L $的行为的差异。

We study the effect of periodic boundary conditions on chiral symmetry breaking and its restoration in Quantum Chromodynamics. As an effective model of the effective potential for the quark condensate, we use the quark-meson model, while the theory is quantized in a cubic box of size $L$. After specifying a renormalization prescription for the vacuum quark loop, we study the condensate at finite temperature, $T$, and quark chemical potential, $μ$. We find that lowering $L$ leads to a catalysis of chiral symmetry breaking. The excitation of the zero mode leads to a jump in the condensate at low temperature and high density, that we suggest to interpret as a gas-liquid phase transition that takes place between the chiral symmetry broken phase (hadron gas) and chiral symmetry restored phase (quark matter). We characterize this intermediate phase in terms of the increase of the baryon density, and of the correlation length of the fluctuations of the order parameter: for small enough $L$ the correlation domains occupy a substantial portion of the volume of the system, and the fluctuations are comparable to those in the critical region. For these reasons, we dub this phase as the {\it subcritical liquid}. The qualitative picture that we draw is in agreement with previous studies based on similar effective models. We also clarify the discrepancy on the behavior of the critical temperature versus $L$ found in different models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源