论文标题
TFPNP:无插件的近端算法,以及用于逆成像问题的应用
TFPnP: Tuning-free Plug-and-Play Proximal Algorithm with Applications to Inverse Imaging Problems
论文作者
论文摘要
插入式游戏(PNP)是一个非凸优化框架,将近端算法结合在一起,例如,乘数的交替方向方法(ADMM)和高级的DeNoinging Priors。在过去的几年中,PNP算法已经获得了巨大的经验成功,尤其是对于那些整合基于深度学习的Denoisiser的算法。但是,PNP方法的一个主要挑战是需要进行手动参数调整,因为在成像条件和不同场景内容的高度差异中获得高质量的结果至关重要。在这项工作中,我们提出了一类无调的PNP近端算法,这些算法可以确定参数,例如自动自动降低强度,终止时间和其他优化参数。我们方法的核心部分是用于自动参数搜索的政策网络,可以通过无模型和基于模型的深度强化学习策略的混合来有效地学习。通过严格的数值和视觉实验,我们证明了学识渊博的策略可以将参数自定义为不同的设置,并且通常比现有手工制作的标准更有效。此外,我们讨论了PNP Denoisers的几个实际考虑,这些考虑与我们学到的政策产生最先进的结果。这种先进的性能在线性和非线性示例逆成像问题上都普遍存在,尤其是在压缩传感MRI,稀疏视图CT,单光子成像和相位检索上显示出令人鼓舞的结果。
Plug-and-Play (PnP) is a non-convex optimization framework that combines proximal algorithms, for example, the alternating direction method of multipliers (ADMM), with advanced denoising priors. Over the past few years, great empirical success has been obtained by PnP algorithms, especially for the ones that integrate deep learning-based denoisers. However, a key challenge of PnP approaches is the need for manual parameter tweaking as it is essential to obtain high-quality results across the high discrepancy in imaging conditions and varying scene content. In this work, we present a class of tuning-free PnP proximal algorithms that can determine parameters such as denoising strength, termination time, and other optimization-specific parameters automatically. A core part of our approach is a policy network for automated parameter search which can be effectively learned via a mixture of model-free and model-based deep reinforcement learning strategies. We demonstrate, through rigorous numerical and visual experiments, that the learned policy can customize parameters to different settings, and is often more efficient and effective than existing handcrafted criteria. Moreover, we discuss several practical considerations of PnP denoisers, which together with our learned policy yield state-of-the-art results. This advanced performance is prevalent on both linear and nonlinear exemplar inverse imaging problems, and in particular shows promising results on compressed sensing MRI, sparse-view CT, single-photon imaging, and phase retrieval.